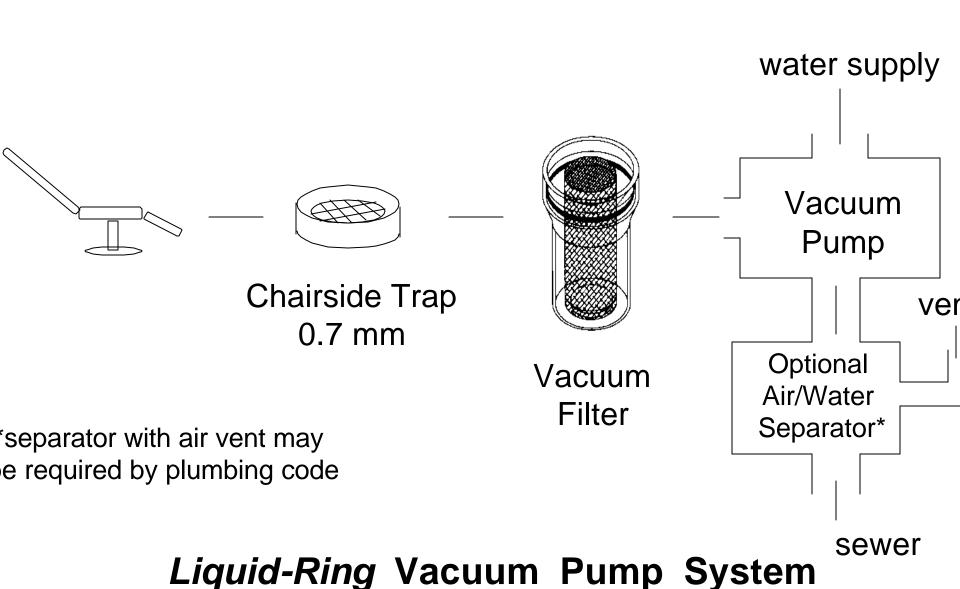
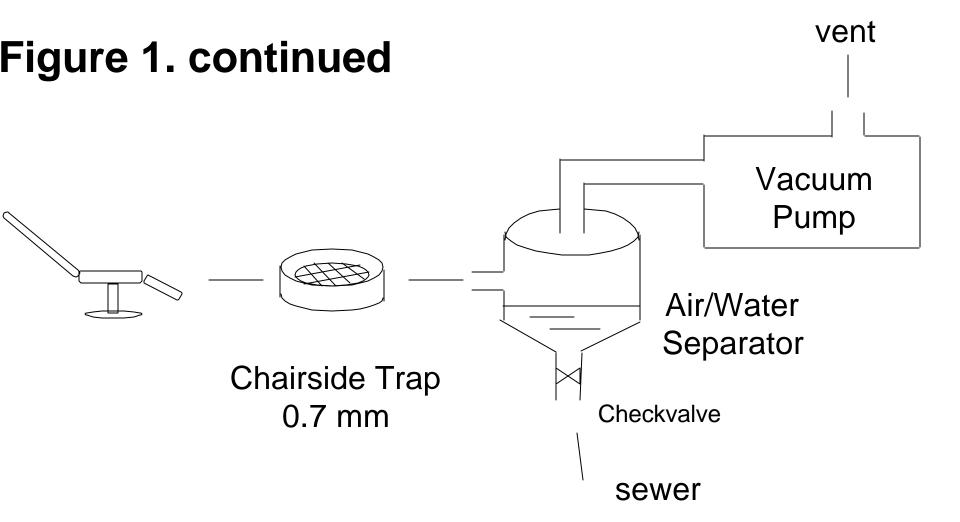
Great Lakes Binational Toxics Strategy Mercury Workgroup


December 2 - 4, 2002 Chicago, Illinois


Defining the Issue: Assessing the Fate and Impact of Dental Amalgam

Loadings of Dental Amalgam/Mercury
To Wastewater Treatment Plants

Peter Berglund, P. E. Metropolitan Council Environmental Services St. Paul, Minnesota 55101

Figure 1. Dental Clinic Vacuum Systems

Turbine (Dry) Vacuum Pump System

(liquid-ring or turbine vacuum pumps may serve multiple chairs)

(Table 1) Mercury Sources as a Percentage of

Minneapolis - St. Paul Area WWTP Loadings

	7 % - 14 %		
Dental Clinics			
total	94 % - 110 %		

Dental loading based on 250-261 mg Hg/dentist/day (WEF 1999)

Studies Completed Under a Partnership Between Metropolitan Council Environmental Services and the Minnesota Dental Association (2001)

- (1) Community-Wide Dental Mercury Study
- (2) Evaluation of Amalgam Removal Equipment (Separators) and Dental Clinic Loadings to the Sanitary Sewer

Overall Findings of Two MCES and MDA Studies:

- Mercury reductions of 29% 44% achieved at two WWTPs while amalgam separators were in place within clinics (Anderson, 2001)
- Mercury discharged per dentist: 234 mg/operating day (based on sampling at clinic vacuum systems)
 (Berglund & Diercks, 2001)
- Separator efficiencies of 91% 99%


 (based on waste downstream of chairside traps)
 (Berglund & Diercks, 2001)

Community-Wide Study - Details of Study:

Purpose: Evaluate dental mercury loading by monitoring WWTP sludge with and without amalgam separators in place at dental clinics

- Two Minnesota cities: Hastings & Cottage Grove
- 24 Dentists participated (out of 25)
- 13 Dental Clinics participated (out of 14)
- Separators in place for 3 months in each city

- Evaluation of Amalgam Removal Separators and Loadings Study Details of Study:
- 7 General Practice dental clinics participated
- 5 Separator models evaluated No "down-time"
- 87 Cumulative weeks of testing/evaluating
- 275 Operating days of wastewater monitoring (to determine: 234 mg Hg/Op. Day per Dentist)
- All wastewater collected, digested, & analyzed

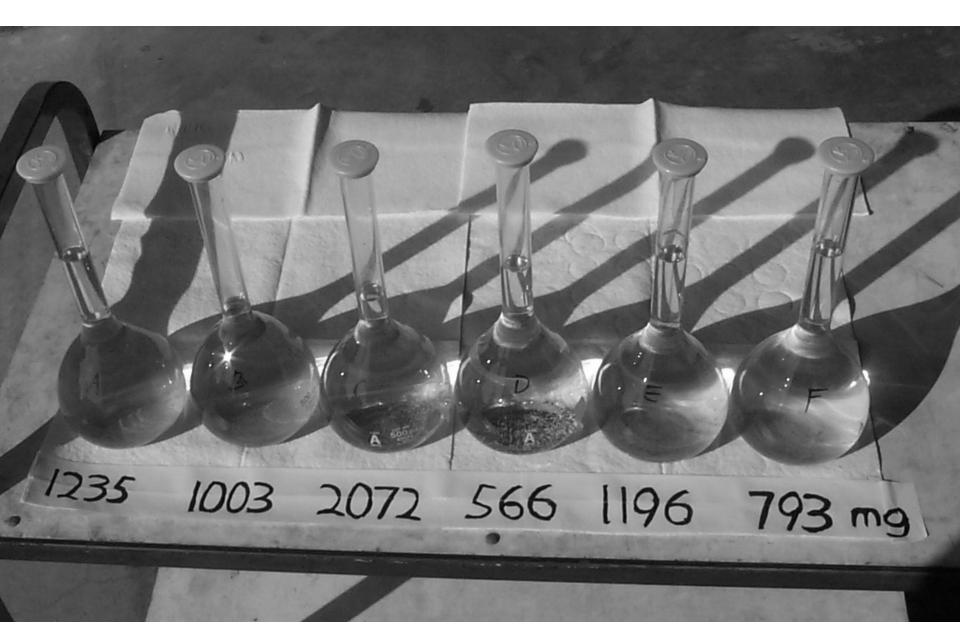


Table 2) Discharge Rates From A Variety Of Studie (rates given in mg Hg/day C.T. = chairside trap)

/lean		
Aedian		
ource		

Clinic Loading Data Based on ADA's October 2002 DRAFT Report by ENVIRON International Corporation

6.34 tons mercury released annually by clinics in U. S. (after chairside traps and vacuum filter - where applicable)

5,751,000,000 mg/year

= 225 - 245 mg Hg / G.P. dentist / operating day

"Empty"	"Full"	
99.99	not tested	99.99
99.96	99.95	99.96
99.89	99.96	99.93
99.93	99.90	99.92
99.67	99.66	99.67
99.36	99.28	99.32
99.66	98.94	99.30
99.10	99.36	99.23
98.88	99.38	99.13
98.06	97.66	97.86
98.17	97.51	97.84
96.09	96.34	96.22
	99.99 99.96 99.89 99.93 99.67 99.66 99.10 98.88	99.99 not tested 99.96 99.95 99.89 99.96 99.93 99.90 99.66 99.28 99.66 98.94 99.10 99.36 98.88 99.38 98.88 99.38

(Table 3

ADA's ISO Testing

JADA May 200

> Avg. Calculated by MCES

References

- Inderson, C.T., Community-Wide Dental Mercury Study. *MCES and Jinn. Dental Assoc. Report*, (MCES Report No. 01-507)
- Trenholt-Bindslev, D. and Larsen, A.H. (1996) Mercury Levels And Discharge In Waste Water From Dental Clinics. *Water, Air, and Soil Pollution*, 86: 93-99
- erglund, P.B. and Diercks, R.W. (2001), Evaluation of Amalgam Removal Equipment and Dental Clinic Loadings to the Sanitary Sewe ICES and Minn. Dental Assoc. Report, (MCES Report No. 01-509)
- Cailas, M.D., et al., (1994) Physico-Chemical Properties of Dental Vastewater. *Proceedings of the Water Environment Federation 67th annual Conference & Exposition*, Chicago

References, continued

ailas, Drummond, Wu, & Ovsey, (2002) Characteristics and eatment of the Dental Waste Water Stream. *Illinois Waste lanagement and Research Center Reports* (No. 2002/50)

EF (1999) Controlling Dental Facility Discharges in Wastewater. Vater Environment Federation, Alexandria VA